Kinin B1 receptor deficiency protects mice fed by cafeteria diet from abnormal glucose homeostasis

Author:

Correia Poliana E.ORCID,Gomes Clarissa B.,Bandeira Vinicius A.,Marten Thais,Natividade Gabriella R.ORCID,Merello Paula,Tozawa Erica,Cerski Carlos T. S.,Budu Alexandre,Araújo Ronaldo,Arbo Bruno D.,Ribeiro Maria Flávia M.,Barros Carlos C.,Gerchman Fernando

Abstract

The kallikrein–kinin system has been implicated in body weight and glucose homeostasis. Their major effectors act by binding to the kinin B2 and B1 receptors. It was assessed the role of the kinin B1 receptor in weight and glucose homeostasis in B1 receptor knockout mice (B1RKO) subjected to a cafeteria diet (CAF). Wild-type (WT) and B1RKO male mice (C57BL/6 background; 8 weeks old) were fed a standard diet (SD) or CAF for 14 weeks, ad libitum, and four groups were formed: WT-SD; B1RKO-SD; WT-CAF; B1RKO-CAF. Body weight and food intake were assessed weekly. It was performed glucose tolerance (GTT) and insulin tolerance tests (ITT), and HOMA-IR, HOMA-β and HOMA-β* 1/HOMA-IR were calculated. Islets from WT and B1RKO were isolated in order to measure the insulin secretion. Western blot was used to assess the hepatic AKT phosphorylation and qPCR to assess gene expression. CAF induced a higher body mass gain in B1RKO compared to WT mice. CAF diet increased epididymal fat depot mass, hepatic fat infiltration and hepatic AKT phosphorylation in both genotypes. However, B1RKO mice presented lower glycemic response during GTT when fed with CAF, and a lower glucose decrease in the ITT. This higher resistance was overcomed with higher insulin secretion when stimulated by high glucose, resulting in higher glucose uptake in the GTT when submitted to CAF, despite lower insulin sensitivity. Islets from B1RKO delivered 4 times more insulin in 3-month-old mice than islets from WT. The higher insulin disposition index and high insulin delivery of B1RKO can explain the decreased glucose excursion during GTT. In conclusion, CAF increased the β-cell function in B1RKO mice, compensated by the diet-induced insulin resistance and resulting in a healthier glycemic response despite the higher weight gain.

Funder

Hospital de Clínicas de Porto Alegre

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3