Abstract
Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.
Funder
Office of Naval Research
U.S. Naval Research Laboratory
National Institute of Food and Agriculture
Strategic Environmental Research and Development Program
Publisher
Public Library of Science (PLoS)
Reference85 articles.
1. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression.;SM Blum;ACS Synth Biol.,2021
2. Cell-free protein synthesis: applications come of age;ED Carlson;Biotechnol Adv,2012
3. Strategies for in vitro engineering of the translation machinery;MJ Hammerling;Nucleic Acids Res,2020
4. Improved cell-free RNA and protein synthesis system;J Li;PLoS One,2014
5. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system.;J Li;Translation (Austin).,2017
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献