Untangling population structure and genetic diversity of reticulocyte binding protein 2b (PvRBP2b) erythrocytic stage vaccine candidate in worldwide Plasmodium vivax isolates

Author:

Nourani Leila,Abouie Mehrizi AkramORCID,Zakeri Sedigheh,Djadid Navid Dinparast

Abstract

Backgrounds Plasmodium vivax is the predominant Plasmodium species distributed extensively in the Americas and Asia-Pacific areas. Encoded protein by Plasmodium vivax Reticulocyte Binding Proteins (PvRBPs) family member are of critical prominence to parasite invasion and have been considered the significant targets in development of malaria vaccine for the blood stage. As high genetic polymorphism of parasites may impede the effectiveness of vaccine development, more research to unraveling genetic polymorphism of pvrbp2b from various geographical regions seems indispensable to map the exact pattern of field isolates. Methodology/Principal findings The aim of this study was to determine the sequences of Iranian pvrbp2b (nt: 502–1896) gene and then, to ascertain polymorphism of pvrbp2b gene, recombination, the level of genetic distances, evaluation of natural selection, and the prediction of B-cell epitopes of Iranian and global P. vivax isolates. Pvrbp2b partial gene was amplified and sequenced from 60 Iranian P. vivax isolates. Iranian pvrbp2b sequences as well as 95 published sequences from five countries were used to evaluate the genetic diversity and neutral evolution signature in worldwide scale. A total of 38 SNPs were identified among 60 Iranian pvrbp2b sequences (32 non-synonymous and 6 synonymous mutations), and 32 amino acid substitutions were observed in 29 positions as compared to Sal-1 sequence. Worldwide sequence analysis showed that 44 amino acid changes had occurred in 37 positions of which seven polymorphic sites had trimorphic mutations while the rest was dimorphic. The overall nucleotide diversity for Iranian isolates was 0.00431 ± 0.00091 while the level of nucleotide diversity was ranged from 0.00337 ± 0.00076 (Peru) to 0.00452 ± 0.00092 (Thailand) in global scale. Conclusions/Significance Of amino acid substitutions, 12 replacements were located in the B-cell epitopes in which nine polymorphic sites were positioned in N-terminal and three polymorphic sites in predicted B-cell epitopes of C-terminal, signifying both variable and conserved epitopes for vaccine designing. Using the achieved outcome of the current investigation interrogate questions to the selection of conserved regions of pvrbp2b and understanding polymorphism and immune system pressure to pave a way for developing a vaccine based on PvRBP2b candidate antigen.

Funder

Iran National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3