Developing random forest hybridization models for estimating the axial bearing capacity of pile

Author:

Pham Tuan Anh,Tran Van QuanORCID

Abstract

Accurate determination of the axial load capacity of the pile is of utmost importance when designing the pile foundation. However, the methods of determining the axial load capacity of the pile in the field are often costly and time-consuming. Therefore, the purpose of this study is to develop a hybrid machine-learning to predict the axial load capacity of the pile. In particular, two powerful optimization algorithms named Herd Optimization (PSO) and Genetic Algorithm (GA) were used to evolve the Random Forest (RF) model architecture. For the research, the data set including 472 results of pile load tests in Ha Nam province—Vietnam was used to build and test the machine-learning models. The data set was divided into training and testing parts with ratio of 80% and 20%, respectively. Various performance indicators, namely absolute mean error (MAE), mean square root error (RMSE), and coefficient of determination (R2) are used to evaluate the performance of RF models. The results showed that, between the two optimization algorithms, GA gave superior performance compared to PSO in finding the best RF model architecture. In addition, the RF-GA model is also compared with the default RF model, the results show that the RF-GA model gives the best performance, with the balance on training and testing set, meaning avoiding the phenomenon of overfitting. The results of the study suggest a potential direction in the development of machine learning models in engineering in general and geotechnical engineering in particular.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference64 articles.

1. Science and Empiricism in Pile Foundation Design;M.F. Randolph;Géotechnique,2003

2. Assessment of Direct Cone Penetration Test Methods for Predicting the Ultimate Capacity of Friction Driven Piles;M.Y. Abu-Farsakh;Journal of Geotechnical and Geoenvironmental Engineering,2004

3. Bearing Capacity and Settlement of Pile Foundations;G.G. Meyerhof;Journal of the Geotechnical Engineering Division,1976

4. Numerical ANFIS-Based Formulation for Prediction of the Ultimate Axial Load Bearing Capacity of Piles Through CPT Data;B. Ghorbani;Geotechnical and Geological Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3