Abstract
Propagation Phase Contrast Synchrotron Microtomography (PPC-SRμCT) is the gold standard for non-invasive and non-destructive access to internal structures of archaeological remains. In this analysis, the virtual specimen needs to be segmented to separate different parts or materials, a process that normally requires considerable human effort. In the Automated SEgmentation of Microtomography Imaging (ASEMI) project, we developed a tool to automatically segment these volumetric images, using manually segmented samples to tune and train a machine learning model. For a set of four specimens of ancient Egyptian animal mummies we achieve an overall accuracy of 94–98% when compared with manually segmented slices, approaching the results of off-the-shelf commercial software using deep learning (97–99%) at much lower complexity. A qualitative analysis of the segmented output shows that our results are close in terms of usability to those from deep learning, justifying the use of these techniques.
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献