Large-scale digital forensic investigation for Windows registry on Apache Spark

Author:

Lee Jun-Ha,Kwon Hyuk-YoonORCID

Abstract

In this study, we investigate large-scale digital forensic investigation on Apache Spark using a Windows registry. Because the Windows registry depends on the system on which it operates, the existing forensic methods on the Windows registry have been targeted on the Windows registry in a single system. However, it is a critical issue to analyze large-scale registry data collected from several Windows systems because it allows us to detect suspiciously changed data by comparing the Windows registry in multiple systems. To this end, we devise distributed algorithms to analyze large-scale registry data collected from multiple Windows systems on the Apache Spark framework. First, we define three main scenarios in which we classify the existing registry forensic studies into them. Second, we propose an algorithm to load the Windows registry into the Hadoop distributed file system (HDFS) for subsequent forensics. Third, we propose a distributed algorithm for each defined forensic scenario using Apache Spark operations. Through extensive experiments using eight nodes in an actual distributed environment, we demonstrate that the proposed method can perform forensics efficiently on large-scale registry data. Specifically, we perform forensics on 1.52 GB of Windows registry data collected from four computers and show that the proposed algorithms can reduce the processing time by up to approximately 3.31 times, as we increase the number of CPUs from 1 to 8 and the number of worker nodes from 2 to 8. Because the distributed algorithms on Apache Spark require the inherent network and MapReduce overheads, this improvement of the processing performance verifies the efficiency and scalability of the proposed algorithms.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Registry. Available online: https://docs.microsoft.com/en-us/windows/desktop/sysinfo/registry;(accessed on 04-Jan.-2022).

2. Constructing a lightweight key-value store based on the windows native features;HY Kwon;Applied Sciences,2019

3. Redundancy Analysis and Elimination on Access Patterns of the Windows Applications Based on I/O Log Data;JH Lee;IEEE Access,2020

4. Introduction to Windows Mobile Forensics;E Casey;Digital Investigation,2010

5. Windows memory forensics;N Ruff;Journal in Computer Virology,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3