Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record

Author:

Siljeström SandraORCID,Neubeck Anna,Steele Andrew

Abstract

Organic molecules preserved in fossils provide a wealth of new information about ancient life. The discovery of almost unaltered complex organic molecules in well-preserved fossils raise the question of how common such occurrences are in the fossil record, how to differentiate between endogenous and exogenous sources for the organic matter and what promotes such preservation. The aim of this study was the in-situ analysis of a well-preserved vertebrate fossil from 48 Ma Eocene sediments in the Messel pit, Germany for preservation of complex biomolecules. The fossil was characterized using a variety of techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX), x-ray diffraction (XRD) and Raman spectroscopy. A suite of organic molecules was detected, including porphyrins, which given the context of the detected signal are most probably diagenetically altered heme originating from the fossil though a microbial contribution cannot be completely ruled out. Diagenetic changes to the porphyrin structure were observed that included the exchange of the central iron by nickel. Further analyses on the geochemistry of the fossil and surrounding sediments showed presence of pyrite and aluminosilicates, most likely clay. In addition, a carbonate and calcium phosphate dominated crust has formed around the fossil. This suggests that several different processes are involved in the preservation of the fossil and the organic molecules associated with it. Similar processes seem to have also been involved in preservation of heme in fossils from other localities.

Funder

Vetenskapsrådet

Swedish National Space Agency

Swedish Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference81 articles.

1. Exceptional preservation of Eocene vertebrates in the lake deposit of Grube Messel (West Germany);J. Franzen;Philosophical Transactions of the Royal Society of London B, Biological Sciences,1985

2. Structural coloration in a fossil feather;J Vinther;Biology Letters,2009

3. Preservation of uropygial gland lipids in a 48-million-year-old bird;S O’Reilly;Proceedings of the Royal Society B: Biological Sciences,2017

4. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte-and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany;E Cadena;PeerJ,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3