Set the tone: Trustworthy and dominant novel voices classification using explicit judgement and machine learning techniques

Author:

Chappuis CyrielleORCID,Grandjean Didier

Abstract

Prior research has established that valence-trustworthiness and power-dominance are the two main dimensions of voice evaluation at zero-acquaintance. These impressions shape many of our interactions and high-impact decisions, so it is crucial for many domains to understand this dynamic. Yet, the relationship between acoustical properties of novel voices and personality/attitudinal traits attributions remains poorly understood. The fundamental problem of understanding vocal impressions and relative decision-making is linked to the complex nature of the acoustical properties in voices. In order to disentangle this relationship, this study extends the line of research on the acoustical bases of vocal impressions in two ways. First, by attempting to replicate previous finding on the bi-dimensional nature of first impressions: using personality judgements and establishing a correspondence between acoustics and voice-first-impression (VFI) dimensions relative to sex (Study 1). Second (Study 2), by exploring the non-linear relationships between acoustical parameters and VFI by the means of machine learning models. In accordance with literature, a bi-dimensional projection comprising valence-trustworthiness and power-dominance evaluations is found to explain 80% of the VFI. In study 1, brighter (high center of gravity), smoother (low shimmers), and louder (high minimum intensity) voices reflected trustworthiness, while vocal roughness (harmonic to noise-ratio), energy in the high frequencies (Energy3250), pitch (Quantile 1, Quantile 5) and lower range of pitch values reflected dominance. In study 2, above chance classification of vocal profiles was achieved by both Support Vector Machine (77.78%) and Random-Forest (Out-Of-Bag = 36.14) classifiers, generally confirming that machine learning algorithms could predict first impressions from voices. Hence results support a bi-dimensional structure to VFI, emphasize the usefulness of machine learning techniques in understanding vocal impressions, and shed light on the influence of sex on VFI formation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Which Voice for which Robot? Designing Robot Voices that Indicate Robot Size;ACM Transactions on Human-Robot Interaction;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3