Sensing spectrum sharing based massive MIMO radar for drone tracking and interception

Author:

Junior Milembolo MiantezilaORCID,Guo Bin

Abstract

Radar sensors are becoming crucial for environmental perception in a world with the tremendous growth of unmanned aerial vehicles (UAVs) or drones. When public safety is a concern, the localization of drones are of great significance. However, a drone used for a wrong motive can cause a serious problem for the environment and public safety, given the fact that the dynamic movement of a drone’s emission signal and location tracking is different from existing positioning. This study proposes a safety zone characterized by the presence of N radars sensors with a goal to track and destabilized rogue drones attending to penetrate safety zones (stadium and school). Specifically, a new joint estimation based on a Gaussian filter has been introduced for spectrum sharing and detection awareness. The profit of this novel sensing method can be clearly seen when the two joint hidden states are taken into consideration. Therefore, the drone’s emission state is analyzed by estimating its movement jointly. Considering the drone’s unknown states and actual positioning, an algorithm is developed based on dynamic states space model. Where Bernoulli filter model is designed to estimate recursively the unknown stages of the drone and its changing location based on time. Meanwhile a power control acted from the radar to the targeted drones so that rogue drones are optimally tracked and destabilized over time. Furthermore, an expanding mechanism has been generated to accurately track the drone and enhance detection. A thoughtful result of the experimentation shows clearly that, even when the drone is moving, spectral detection can be performed accurately by chasing its positions. Its demonstrates at 90% of credibility that the original signal has a direct effect on the propagated signal. Therefore, the magnitude of the Doppler shift increases with frequency. And the clue of its positioning can be used for cognitive radio optimization.

Funder

Natural Science Foundation of Jilin Province

Jilin Scientific and Technological Development Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. SoK: Security and privacy in the age of commercial drones;B. Nassi;Proc. IEEE Symp. Security Privacy (SP),2021

2. Detection of small UAV helicopters using micro-Doppler;D. Tahmoush;Radar Sensor Technology XVIII,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multistatic Passive Radar for drone detection based Random Finite State;EMITTER International Journal of Engineering Technology;2024-06-15

2. Bayesian Joint Localization and Tracking Algorithm Using Multiple-Input Multiple-Output Radar;2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP);2023-12-10

3. A Review of Research on Spectrum Sensing Based on Deep Learning;Electronics;2023-11-02

4. UAV-Pose: A Dual Capture Network Algorithm for Low Altitude UAV Attitude Detection and Tracking;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3