Abstract
Radar sensors are becoming crucial for environmental perception in a world with the tremendous growth of unmanned aerial vehicles (UAVs) or drones. When public safety is a concern, the localization of drones are of great significance. However, a drone used for a wrong motive can cause a serious problem for the environment and public safety, given the fact that the dynamic movement of a drone’s emission signal and location tracking is different from existing positioning. This study proposes a safety zone characterized by the presence of N radars sensors with a goal to track and destabilized rogue drones attending to penetrate safety zones (stadium and school). Specifically, a new joint estimation based on a Gaussian filter has been introduced for spectrum sharing and detection awareness. The profit of this novel sensing method can be clearly seen when the two joint hidden states are taken into consideration. Therefore, the drone’s emission state is analyzed by estimating its movement jointly. Considering the drone’s unknown states and actual positioning, an algorithm is developed based on dynamic states space model. Where Bernoulli filter model is designed to estimate recursively the unknown stages of the drone and its changing location based on time. Meanwhile a power control acted from the radar to the targeted drones so that rogue drones are optimally tracked and destabilized over time. Furthermore, an expanding mechanism has been generated to accurately track the drone and enhance detection. A thoughtful result of the experimentation shows clearly that, even when the drone is moving, spectral detection can be performed accurately by chasing its positions. Its demonstrates at 90% of credibility that the original signal has a direct effect on the propagated signal. Therefore, the magnitude of the Doppler shift increases with frequency. And the clue of its positioning can be used for cognitive radio optimization.
Funder
Natural Science Foundation of Jilin Province
Jilin Scientific and Technological Development Program
Publisher
Public Library of Science (PLoS)
Reference42 articles.
1. SoK: Security and privacy in the age of commercial drones;B. Nassi;Proc. IEEE Symp. Security Privacy (SP),2021
2. Detection of small UAV helicopters using micro-Doppler;D. Tahmoush;Radar Sensor Technology XVIII,2014
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献