Three-dimensional kinematic evaluation of lateral suture stabilization in an in vitro canine cranial cruciate deficient stifle model

Author:

Del Carpio Laura-Isabela,Petit Yvan,Diotalevi LucienORCID,Laroche Elisabeth,Levasseur Annie,Lussier BertrandORCID

Abstract

The impact of surgical correction of cranial cruciate ligament rupture (CCLR) on 3D kinematics has not been thoroughly evaluated in dogs. The success of current techniques remains limited, as illustrated by suboptimal weightbearing and progression of osteoarthritis. The inability to restore the stifle’s 3D kinematics might be a key element in understanding these suboptimal outcomes. The objective of this study was to evaluate the impact of lateral suture stabilization (LSS) on the 3D kinematics of the canine stifle joint. We hypothesized that LSS would not restore 3D kinematics in our model. Ten cadaveric pelvic limbs collected from large dogs (25–40 kg) were tested using a previously validated apparatus that simulates gait. Three experimental conditions were compared: (a) intact stifle; (b) unstable stifle following cranial cruciate ligament transection (CCLt) and (c) CCLt stabilized by LSS. Three-dimensional kinematics were collected through 5 loading cycles simulating the stance phase of gait and curves were analyzed using a Wilcoxon signed-rank test. LSS restored baseline kinematics for the entire stance phase for cranial and lateromedial translation, flexion, and abduction. It restored distraction over 90% of the stance phase. Internal rotation was limited, but not restored. This in vitro study had limitations, as it used a simplified model of stifle motion and weight-bearing. The results of this study report that LSS can restore physiologic 3D kinematics largely comparable to those of healthy stifles. Suboptimal outcome in patients following CCLR stabilization by LSS may therefore result from causes other than immediate postoperative abnormal 3D kinematics.

Funder

University of Montreal Zoetis clinical research fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3