Data augmentation using Variational Autoencoders for improvement of respiratory disease classification

Author:

Saldanha Jane,Chakraborty Shaunak,Patil ShrutiORCID,Kotecha KetanORCID,Kumar Satish,Nayyar Anand

Abstract

Computerized auscultation of lung sounds is gaining importance today with the availability of lung sounds and its potential in overcoming the limitations of traditional diagnosis methods for respiratory diseases. The publicly available ICBHI respiratory sounds database is severely imbalanced, making it difficult for a deep learning model to generalize and provide reliable results. This work aims to synthesize respiratory sounds of various categories using variants of Variational Autoencoders like Multilayer Perceptron VAE (MLP-VAE), Convolutional VAE (CVAE) Conditional VAE and compare the influence of augmenting the imbalanced dataset on the performance of various lung sound classification models. We evaluated the quality of the synthetic respiratory sounds’ quality using metrics such as Fréchet Audio Distance (FAD), Cross-Correlation and Mel Cepstral Distortion. Our results showed that MLP-VAE achieved an average FAD of 12.42 over all classes, whereas Convolutional VAE and Conditional CVAE achieved an average FAD of 11.58 and 11.64 for all classes, respectively. A significant improvement in the classification performance metrics was observed upon augmenting the imbalanced dataset for certain minority classes and marginal improvement for the other classes. Hence, our work shows that deep learning-based lung sound classification models are not only a promising solution over traditional methods but can also achieve a significant performance boost upon augmenting an imbalanced training set.

Funder

Symbiosis International Deemed University, Pune

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference50 articles.

1. Speech recognition by machine: A review;D. R. Reddy;Proceedings of IEEE,1976

2. Sound synthesizer programming using deep learning;Frederic Vecoven;Dissertation, Université de Liège, Liège, Belgique,2020

3. Acoustic Classification using Deep Learning;Muhammad Umer Sarwar Muhammad Ahsan Aslam;International Journal of Advanced Computer Science and Applications (IJACSA),2018

4. Bach2Bach: Generating Music Using A Deep Reinforcement Learning Approach;Nikhil Kotecha;arXiv,2018

5. Sound Event Detection Using Derivative Features in Deep Neural Networks;Jin-Yeol Kwak;Applied Sciences,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3