Proteome profile of patients with excellent and poor speech intelligibility after cochlear implantation: Can perilymph proteins predict performance?

Author:

Durisin Martin,Krüger Caroline,Pich Andreas,Warnecke AthanasiaORCID,Steffens MelanieORCID,Zeilinger Carsten,Lenarz Thomas,Prenzler Nils,Schmitt Heike

Abstract

Modern proteomic analysis and reliable surgical access to gain liquid inner ear biopsies have enabled in depth molecular characterization of the cochlea microenvironment. In order to clarify whether the protein composition of the perilymph can provide new insights into individual hearing performance after cochlear implantation (CI), computational analysis in correlation to clinical performance after CI were performed based on the proteome profile derived from perilymph samples (liquid biopsies). Perilymph samples from cochlear implant recipients have been analyzed by mass spectrometry (MS). The proteins were identified using the shot-gun proteomics method and quantified and analyzed using Max Quant, Perseus and IPA software. A total of 75 perilymph samples from 68 (adults and children) patients were included in the analysis. Speech perception data one year after implantation were available for 45 patients and these were used for subsequent analysis. According to their hearing performance, patients with excellent (n = 22) and poor (n = 14) performance one year after CI were identified and used for further analysis. The protein composition and statistically significant differences in the two groups were detected by relative quantification of the perilymph proteins. With this procedure, a selection of 287 proteins were identified in at least eight samples in both groups. In the perilymph of the patients with excellent and poor performance, five and six significantly elevated proteins were identified respectively. These proteins seem to be involved in different immunological processes in excellent and poor performer. Further analysis on the role of specific proteins as predictors for poor or excellent performance among CI recipients are mandatory. Combinatory analysis of molecular inner ear profiles and clinical performance data using bioinformatics analysis may open up new possibilities for patient stratification. The impact of such prediction algorithms on diagnosis and treatment needs to be established in further studies.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3