Early warning for healthcare acquired infections in neonatal care units in a low-resource setting using routinely collected hospital data: The experience from Haiti, 2014–2018

Author:

Lenglet AnnickORCID,Contigiani Omar,Ariti Cono,Evens Estivern,Charles Kessianne,Casimir Carl-Frédéric,Senat Delva Rodnie,Badjo Colette,Roggeveen Harriet,Pawulska Barbara,Clezy Kate,McRae Melissa,Wertheim Heiman,Hopman Joost

Abstract

In low-resource settings, detection of healthcare-acquired outbreaks in neonatal units relies on astute clinical staff to observe unusual morbidity or mortality from sepsis as microbiological diagnostics are often absent. We aimed to generate reliable (and automated) early warnings for potential clusters of neonatal late onset sepsis using retrospective data that could signal the start of an outbreak in an NCU in Port au Prince, Haiti, using routinely collected data on neonatal admissions. We constructed smoothed time series for late onset sepsis cases, late onset sepsis rates, neonatal care unit (NCU) mortality, maternal admissions, neonatal admissions and neonatal antibiotic consumption. An outbreak was defined as a statistical increase in any of these time series indicators. We created three outbreak alarm classes: 1) thresholds: weeks in which the late onset sepsis cases exceeded four, the late onset sepsis rates exceeded 10% of total NCU admissions and the NCU mortality exceeded 15%; 2) differential: late onset sepsis rates and NCU mortality were double the previous week; and 3) aberration: using the improved Farrington model for late onset sepsis rates and NCU mortality. We validated pairs of alarms by calculating the sensitivity and specificity of the weeks in which each alarm was launched and comparing each alarm to the weeks in which a single GNB positive blood culture was reported from a neonate. The threshold and aberration alarms were the strongest predictors for current and future NCU mortality and current LOS rates (p<0.0002). The aberration alarms were also those with the highest sensitivity, specificity, negative predictive value, and positive predictive value. Without microbiological diagnostics in NCUs in low-resource settings, applying these simple algorithms to routinely collected data show great potential to facilitate early warning for possible healthcare-acquired outbreaks of LOS in neonates. The methods used in this study require validation across other low-resource settings.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. The global burden of paediatric and neonatal sepsis: a systematic review;C Fleischmann-Struzek;The Lancet Respiratory Medicine. Lancet Publishing Group,2018

2. Hospital-acquired neonatal infections in developing countries;AKM Zaidi;Lancet.,2005

3. Sepsis: A threat that needs a global solution;FR Machado;Critical Care Medicine,2018

4. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis.;R Markwart;Intensive Care Medicine.,2020

5. Outbreaks in neonatal intensive care units-They are not like others;P Gastmeier;American Journal of Infection Control,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3