Biochemical and molecular characterization of the SBiP1 chaperone from Symbiodinium microadriaticum CassKB8 and light parameters that modulate its phosphorylation

Author:

Castillo-Medina Raúl Eduardo,Islas-Flores Tania,Morales-Ruiz Estefanía,Villanueva Marco A.ORCID

Abstract

The coding and promoter region sequences from the BiP-like protein SBiP1 from Symbiodinium microadriaticum CassKB8 were obtained by PCR, sequenced and compared with annotated sequences. The nucleotides corresponding to the full sequence were correctly annotated and the main SBiP1 features determined at the nucleotide and amino acid level. The translated protein was organized into the typical domains of the BiP/HSP70 family including a signal peptide, a substrate- and a nucleotide-binding domain, and an ER localization sequence. Conserved motifs included a highly conserved Thr513 phosphorylation site and two ADP-ribosylation sites from eukaryotic BiP’s. Molecular modeling showed the corresponding domain regions and main exposed post-translational target sites in its three-dimensional structure, which also closely matched Homo sapiens BiP further indicating that it indeed corresponds to a BiP/HSP70 family protein. The gene promoter region showed at least eight light regulation-related sequences consistent with the molecule being highly phosphorylated in Thr under dark conditions and dephosphorylated upon light stimuli. We tested light parameter variations that could modulate the light mediated phosphorylation effect and found that SBiP1 Thr dephosphorylation was only significantly detected after 15–30 min light stimulation. Such light-induced dephosphorylation was observed even when dichlorophenyl dimethyl urea, a photosynthesis inhibitor, was also present in the cells during the light stimulation. Dephosphorylation occurred indistinctly under red, yellow, blue or the full visible light spectra. In additon, it was observed at a light intensity of as low as 1 μmole photon m-2 s-1. Our results indicate that: a) SBiP1 is a chaperone belonging to the BiP/HSP70 family proteins; b) its light-modulated phosphorylation/dephosphorylation most likely functions as an activity switch for the chaperone; c) this light-induced modulation occurs relatively slow but is highly sensitive to the full spectrum of visible light; and d) the light induced Thr dephosphorylation is independent of photosynthetic activity in these cells.

Funder

Consejo Nacional de Humanidades, Ciencia y Tecnología, México

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: Taxonomy, life cycle, and morphology;HD Freudenthal;J Eukaryot Microbiol,1962

2. Signaling through WD-repeat proteins in plants;MA Villanueva;Front Plant Sci,2016

3. Molecular features and mRNA expression of the Receptor for Activated C Kinase 1 from Symbiodinium microadriaticum ssp. microadriaticum during growth and the light/dark cycle;T Islas-Flores;J Eukaryot Microbiol,2019

4. RACK1, A multifaceted scaffolding protein: structure and function.;DR Adams;Cell Comm Signal.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3