Fast cycling culture of the annelid model Platynereis dumerilii

Author:

Legras MathieuORCID,Ghisleni GiuliaORCID,Regnard Léna,Dias Manon,Soilihi Rabouant,Celmar Enzo,Balavoine GuillaumeORCID

Abstract

Platynereis dumerilii, a marine annelid, is a model animal that has gained popularity in various fields such as developmental biology, biological rhythms, nervous system organization and physiology, behaviour, reproductive biology, and epigenetic regulation. The transparency of P. dumerilii tissues at all developmental stages makes it easy to perform live microscopic imaging of all cell types. In addition, the slow-evolving genome of P. dumerilii and its phylogenetic position as a representative of the vast branch of Lophotrochozoans add to its evolutionary significance. Although P. dumerilii is amenable to transgenesis and CRISPR-Cas9 knockouts, its relatively long and indefinite life cycle, as well as its semelparous reproduction have been hindrances to its adoption as a reverse genetics model. To overcome this limitation, an adapted culturing method has been developed allowing much faster life cycling, with median reproductive age at 13–14 weeks instead of 25–35 weeks using the traditional protocol. A low worm density in boxes and a strictly controlled feeding regime are important factors for the rapid growth and health of the worms. This culture method has several advantages, such as being much more compact, not requiring air bubbling or an artificial moonlight regime for synchronized sexual maturation and necessitating only limited water change. A full protocol for worm care and handling is provided.

Funder

Agence Nationale de la Recherche

Association pour la Recherche sur le Cancer

Eur.GENE

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference81 articles.

1. Experiments on plant hybrids by Gregor Mendel. Vol. 204, Genetics.;S Abbott;Genetics,2016

2. Model Organisms

3. Developmental genetics with model organisms;U Irion;Proc Natl Acad Sci U S A,2022

4. The evolution of signalling pathways in animal development;A Pires-daSilva;Nat Rev Genet,2003

5. Regulatory evolution and the origin of the bilaterians;KJ Peterson;Proceedings of the National Academy of Sciences,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3