Abstract
Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms. Here, RNA-seq analyses were conducted to compare the global gene expression patterns of wild-type and Δgsu1771 mutant biofilms grown on non-conductive (glass) and conductive (graphite electrode) materials. The Δgsu1771 biofilm grown on the glass surface exhibited 467 differentially expressed (DE) genes (167 upregulated and 300 downregulated) versus the wild-type biofilm. In contrast, the Δgsu1771 biofilm grown on the graphite electrode exhibited 119 DE genes (79 upregulated and 40 downregulated) versus the wild-type biofilm. Among these DE genes, 67 were also differentially expressed in the Δgsu1771 biofilm grown on glass (56 with the same regulation and 11 exhibiting counter-regulation). Among the upregulated genes in the Δgsu1771 biofilms, we identified potential target genes involved in exopolysaccharide synthesis (gsu1961-63, gsu1959, gsu1972-73, gsu1976-77). RT-qPCR analyses were then conducted to confirm the differential expression of a selection of genes of interest. DNA-protein binding assays demonstrated the direct binding of the GSU1771 regulator to the promoter region of pgcA, pulF, relA, and gsu3356. Furthermore, heme-staining and western blotting revealed an increase in c-type cytochromes including OmcS and OmcZ in Δgsu1771 biofilms. Collectively, our findings demonstrated that GSU1771 is a global regulator that controls extracellular electron transfer and exopolysaccharide synthesis in G. sulfurreducens, which is crucial for electroconductive biofilm development.
Funder
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Consejo Nacional de Ciencia y Tecnología
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献