A hybrid adaptive large neighborhood search for time-dependent open electric vehicle routing problem with hybrid energy replenishment strategies

Author:

Fan LijunORCID

Abstract

As competition intensifies, an increasing number of companies opt to outsource their package distribution operations to professional Third-Party Logistics (3PL) fleets. In response to the growing concern over urban pollution, 3PL fleets have begun to deploy Electric Vehicles (EVs) to perform transportation tasks. This paper aims to address the Time-Dependent Open Electric Vehicle Routing Problem with Hybrid Energy Replenishment Strategies (TDOEVRP-HERS) in the context of urban distribution. The study considers the effect of dynamic urban transport networks on EV energy drain and develops an approach for estimating energy consumption. Meanwhile, the research further empowers 3PL fleets to judiciously oscillate between an array of energy replenishment techniques, encompassing both charging and battery swapping. Based on these insights, a Mixed-Integer Programming (MIP) model with the objective of minimizing total distribution costs incurred by the 3PL fleet is formulated. Given the characteristics of the model, a Hybrid Adaptive Large Neighborhood Search (HALNS) is designed, synergistically integrating the explorative prowess of Ant Colony Optimization (ACO) with the localized search potency of Adaptive Large Neighborhood Search (ALNS). The strategic blend leverages the broad-based solution initiation of ACO as a foundational layer for ALNS’s deeper, nuanced refinements. Numerical experiments on a spectrum of test sets corroborate the efficacy of the HALNS: it proficiently designs vehicular itineraries, trims down EV energy requisites, astutely chooses appropriate energy replenishment avenues, and slashes logistics-related outlays. Therefore, this work not only introduces a new hybrid heuristic technique within the EVRP field, providing high-quality solutions but also accentuates its pivotal role in fostering a sustainable trajectory for urban logistics transportation.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3