Increased sensitivity of malaria parasites to common antimalaria drugs after the introduction of artemether-lumefantrine: Implication of policy change and implementation of more effective drugs in fight against malaria

Author:

Okore Winnie,Ouma Collins,Okoth Raphael O.,Yeda Redemptah,Ingasia Luicer O.,Mwakio Edwin W.,Ochora Douglas O.ORCID,Wakoli Duncan M.ORCID,Amwoma Joseph G.ORCID,Chemwor Gladys C.ORCID,Juma Jackline A.,Okudo Charles O.,Cheruiyot Agnes C.,Opot Benjamin H.,Juma Dennis,Egbo Timothy E.,Andagalu Ben,Roth Amanda,Kamau Edwin,Akala Hoseah M.ORCID

Abstract

Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604–4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134–3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88–80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81–26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99–71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976–9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608–4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266–3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.

Funder

Armed Forces Health Surveillance Branch

Publisher

Public Library of Science (PLoS)

Reference60 articles.

1. World malaria report 2022 [Internet].;World Health Organization,2022

2. World Malaria Report 2019 [Internet].;World Health Organization,2019

3. Global technical strategy for malaria 2016–2030, 2021 update [Internet].;World Health Organization,2021

4. Spread of Artemisinin Resistance in Plasmodium falciparum Malaria;EA Ashley;N Engl J Med,2014

5. Recovery and stable persistence of chloroquine sensitivity in Plasmodium falciparum parasites after its discontinued use in Northern Uganda. Malar J;B Balikagala;Internet],2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3