Abstract
This study explores the visual phenomenon of random dot structure-from-motion (SFM), where the brain perceives 3D shapes from the coordinated 2D motion of dots. Observing SFM may lead to ambiguous depth relations that reverse back and forth during prolonged viewing. I demonstrate that different processes are involved in triggering perceived reversals for identical SFM shapes involved in spinning and wobbling motion. Durations of stable percepts were measured while human participants viewed the two SFM stimuli, and also a static Necker figure, and a wobbling Necker figure for two sets of 2.5 minutes each. The results showed that wobbling SFM resulted in much longer stable durations compared to the other stimuli. The durations for the wobbling SFM stimuli was not correlated with the spinning SFM, or the two Necker stimuli. Yet, such correlations were obtained between the other stimuli. It is known that reversals obtained while viewing spinning SFM stimuli involves bottom-up driven adaptation and recovery cycles between neural populations. This result suggests that wobbling SFM efficiently deactivates this process and targets other contributions to the reversals, such as top-down processes. In addition, biases observed in the first set disappeared in the second set implying influences of learning between the sets. Imagery vividness, which measures intrinsic top-down processes, was also scored but no correlation between scores in visual imagery and reversal rates were obtained. This research provides insight into the complex interplay between bottom-up driven adaptation-recovery cycles, and top-down processes in ambiguous perception.
Publisher
Public Library of Science (PLoS)