Abstract
The cabbage white butterfly (Pieris rapae), a major agricultural pest, has become one of the most abundant and destructive butterflies in the world. It is widely distributed in a large variety of climates and terrains of China due to its strong adaptability. To gain insight into the population genetic characteristics of P. rapae in China, we resequenced the genome of 51 individuals from 19 areas throughout China. Using population genomics approaches, a dense variant map of P. rapae was observed, indicating a high level of polymorphism that could result in adaptation to a changing environment. The feature of the genetic structure suggested considerable genetic admixture in different geographical groups. Additionally, our analyses suggest that physical barriers may have played a more important role than geographic distance in driving genetic differentiation. Population history showed the effective population size of P. rapae was greatly affected by global temperature changes, with mild periods (i.e., temperatures warmer than those during glaciation but not excessively hot) leading to an increase in population size. Furthermore, by comparing populations from south and north China, we have identified selected genes related to sensing temperature, growth, neuromodulation and immune response, which may reveal the genetic basis of adaptation to different environments. Our study is the first to illustrate the genetic signatures of P. rapae in China at the population genomic level, providing fundamental knowledge of the genetic diversity and adaptation of P. rapae.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Publisher
Public Library of Science (PLoS)