Abstract
Photovoltaic (PV) system parameters are always non-linear due to variable environmental conditions. The Maximum power point tracking (MPPT) is difficult under multiple uncertainties, disruptions and the occurrence of time-varying stochastic conditions. Therefore, Passivity based Fractional order Sliding-Mode controller (PBSMC) is proposed to examine and develop a storage function in error tracking for PV power and direct voltage in this research work. A unique sliding surface for Fractional Order Sliding Mode Control (FOSMC) framework is proposed and its stability and finite time convergence is proved by implementing Lyapunov stability method. An additional input of sliding mode control (SMC) is also added to a passive system to boost the controller performance by removing the rapid uncertainties and disturbances. Therefore, PBSMC, along with globally consistent control efficiency under varying operating conditions is implemented with enhanced system damping and substantial robustness. The novelty of the proposed technique lies in a unique sliding surface for FOSMC framework based on Riemann Liouville (R-L) fractional calculus. Results have shown that the proposed control technique reduces the tracking error in PV output power, under variable irradiance conditions, by 81%, compared to fractional order proportional integral derivative (FOPID) controller. It is reduced by 39%, when compared to passivity based control (PBC) and 28%, when compared to passivity based FOPID (EPBFOPID). The proposed technique led to the least total harmonic distortion in the grid side voltage and current. The tracking time of PV output power is 0.025 seconds in PBSMC under varying solar irradiance, however FOPID, PBC, EPBFOPID, have failed to converge fully. Similarly the dc link voltage has tracked the reference voltage in 0.05 seconds however the rest of the methods either could not converge, or converged after significant amount of time. During solar irradiance and temperature change, the photovoltaic output power has converged in 0.018 seconds using PBSMC, however remaining methods failed to converge or track fully and the dc link voltage has minimum tracking error due to PBSMC as compared to the other methods. Furthermore, the photovoltaic output power converges to the reference power in 0.1 seconds in power grid voltage drop, whereas other methods failed to converge fully. In addition power is also injected from the PV inverter into the grid at unity power factor.
Publisher
Public Library of Science (PLoS)
Reference49 articles.
1. Passivity-based control of power systems considering hydro-turbine with surge tank;W. J.-M. Gil-González;IEEE Transactions on Power Systems,2020
2. Study of passivity-based decoupling control of T-NPC PV grid-connected inverter;J. M. Wang;IEEE Transactions on Industrial Electronics,2017
3. Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine;B. J. Yang;International Journal of Electrical Power & Energy Systems,2016
4. Adaptive wide-area power oscillation damper design for photovoltaic plant considering delay compensation;Y. Y. Shen;IET Generation, Transmission & Distribution,2017
5. Bao, X. W. (2012). The maximum power point tracking technology of passivity-based photovoltaic grid-connected system. In Proceedings of The 7th International Power Electronics and Motion Control Conference (pp. (Vol. 2, pp. 1372–1376)). IEEE.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献