Knowledge relation rank enhanced heterogeneous learning interaction modeling for neural graph forgetting knowledge tracing

Author:

Li Linqing,Wang ZhifengORCID

Abstract

Knowledge tracing models have gained prominence in educational data mining, with applications like the Self-Attention Knowledge Tracing model, which captures the exercise-knowledge relationship. However, conventional knowledge tracing models focus solely on static question-knowledge and knowledge-knowledge relationships, treating them with equal significance. This simplistic approach often succumbs to subjective labeling bias and lacks the depth to capture nuanced exercise-knowledge connections. In this study, we propose a novel knowledge tracing model called Knowledge Relation Rank Enhanced Heterogeneous Learning Interaction Modeling for Neural Graph Forgetting Knowledge Tracing. Our model mitigates the impact of subjective labeling by fine-tuning the skill relation matrix and Q-matrix. Additionally, we employ Graph Convolutional Networks (GCNs) to capture intricate interactions between students, exercises, and skills. Specifically, the Knowledge Relation Importance Rank Calibration method is employed to generate the skill relation matrix and Q-matrix. These calibrated matrices, alongside heterogeneous interactions, serve as input for the GCN to compute exercise and skill embeddings. Subsequently, exercise embeddings, skill embeddings, item difficulty, and contingency tables collectively contribute to an exercise relation matrix, which is then fed into an attention mechanism for predictions. Experimental evaluations on two publicly available educational datasets demonstrate the superiority of our proposed model over baseline models, evidenced by enhanced performance across three evaluation metrics.

Funder

National Natural Science Foundation of China

AI and Faculty Empowerment Pilot Project

Collaborative Innovation Center for Informatization and Balanced Development of K-12 Education by MOE and Hubei Province

Natural Science Foundation of Hubei Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3