Fat tails and the need to disclose distribution parameters of qEEG databases

Author:

Wood GuilhermeORCID,Willmes Klaus,Koten Jan Willem,Kober Silvia Erika

Abstract

Neurometry (a.k.a. quantitative EEG or qEEG) is a popular method to assess clinically relevant abnormalities in the electroencephalogram. Neurometry is based on norm values for the distribution of specific EEG parameters and believed to show good psychometric properties such as test-retest reliability. Many psychometric properties only hold under the Gaussian distribution and become problematic when distributions are fat-tailed. EEG signals are typically fat-tailed and do not show fast convergence to a Gaussian distribution. To circumvent this property of EEG, log-transformations have frequently, but not always been employed. In Monte Carlo simulations, we investigated the impact of fat-tails (i.e. deviations from Gaussian) on the cut-off criteria and changeability of what in neurometry is termed “abnormal EEG”. Even slight deviations from the Gaussian distribution as measured by skewness and kurtosis lead to large inflation in the number of false positive qEEG findings. The more stringent the cutoff value adopted, the larger the inflation. Moreover, “abnormal EEG” seems to recover spontaneously at rates not compatible with the alleged test-retest reliability of qEEG. Alternative methods should be employed to determine cut-off values for diagnostics purposes, since a large number of false positive results emerge even when slight deviations from the Gaussian distribution are present. We argue that distribution properties of qEEG databases should be disclosed in much more detail by commercial providers to avoid questionable research practices and promote diagnostic transparency. We provide recommendations for the improvement of psychometric properties of existing qEEG databases.

Funder

University of Graz

Publisher

Public Library of Science (PLoS)

Reference34 articles.

1. Use of databases in QEEG evaluation;J Johnstone;Journal of Neurotherapy,2003

2. History of the scientific standards of QEEG normative databases;R. W. Thatcher;Introduction to quantitative EEG and neurofeedback: Advanced theory and applications,2009

3. EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations;J. H. Gruzelier;Neurosci Biobehav Rev,2014

4. The required sample size when estimating variances;W. A. Thompson;Am Stat,1961

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical Substantiations Of Registration And Analysis Of EEG To Increase The Reliability Of Neurofeedback Training (NFT);2024 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3