Abstract
Neurometry (a.k.a. quantitative EEG or qEEG) is a popular method to assess clinically relevant abnormalities in the electroencephalogram. Neurometry is based on norm values for the distribution of specific EEG parameters and believed to show good psychometric properties such as test-retest reliability. Many psychometric properties only hold under the Gaussian distribution and become problematic when distributions are fat-tailed. EEG signals are typically fat-tailed and do not show fast convergence to a Gaussian distribution. To circumvent this property of EEG, log-transformations have frequently, but not always been employed. In Monte Carlo simulations, we investigated the impact of fat-tails (i.e. deviations from Gaussian) on the cut-off criteria and changeability of what in neurometry is termed “abnormal EEG”. Even slight deviations from the Gaussian distribution as measured by skewness and kurtosis lead to large inflation in the number of false positive qEEG findings. The more stringent the cutoff value adopted, the larger the inflation. Moreover, “abnormal EEG” seems to recover spontaneously at rates not compatible with the alleged test-retest reliability of qEEG. Alternative methods should be employed to determine cut-off values for diagnostics purposes, since a large number of false positive results emerge even when slight deviations from the Gaussian distribution are present. We argue that distribution properties of qEEG databases should be disclosed in much more detail by commercial providers to avoid questionable research practices and promote diagnostic transparency. We provide recommendations for the improvement of psychometric properties of existing qEEG databases.
Publisher
Public Library of Science (PLoS)
Reference34 articles.
1. Use of databases in QEEG evaluation;J Johnstone;Journal of Neurotherapy,2003
2. History of the scientific standards of QEEG normative databases;R. W. Thatcher;Introduction to quantitative EEG and neurofeedback: Advanced theory and applications,2009
3. EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations;J. H. Gruzelier;Neurosci Biobehav Rev,2014
4. The required sample size when estimating variances;W. A. Thompson;Am Stat,1961
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Theoretical Substantiations Of Registration And Analysis Of EEG To Increase The Reliability Of Neurofeedback Training (NFT);2024 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT);2024-05-13