Littoral sediment arsenic concentrations predict arsenic trophic transfer and human health risk in contaminated lakes

Author:

Hull Erin A.,Stiling Rebekah R.,Barajas Marco,Neumann Rebecca B.,Olden Julian D.,Gawel James E.ORCID

Abstract

Lake sediments store metal contaminants from historic pesticide and herbicide use and mining operations. Historical regional smelter operations in the Puget Sound lowlands have resulted in arsenic concentrations exceeding 200 μg As g-1 in urban lake sediments. Prior research has elucidated how sediment oxygen demand, warmer sediment temperatures, and alternating stratification and convective mixing in shallow lakes results in higher concentrations of arsenic in aquatic organisms when compared to deeper, seasonally stratified lakes with similar levels of arsenic pollution in profundal sediments. In this study we examine the trophic pathways for arsenic transfer through the aquatic food web of urban lakes in the Puget Sound lowlands, measuring C and N isotopes–to determine resource usage and trophic level–and total and inorganic arsenic in primary producers and primary and secondary consumers. Our results show higher levels of arsenic in periphyton than in other primary producers, and higher concentrations in snails than zooplankton or insect macroinvertebrates. In shallow lakes arsenic concentrations in littoral sediment are similar to deep profundal sediments due to arsenic remobilization, mixing, and redeposition, resulting in direct arsenic exposure to littoral benthic organisms such as periphyton and snails. The influence of littoral sediment on determining arsenic trophic transfer is evidenced by our results which show significant correlations between total arsenic in littoral sediment and total arsenic in periphyton, phytoplankton, zooplankton, snails, and fish across multiple lakes. We also found a consistent relationship between percent inorganic arsenic and trophic level (determined by δ15N) in lakes with different depths and mixing regimes. Cumulatively, these results combine to provide a strong empirical relationship between littoral sediment arsenic levels and inorganic arsenic in edible species that can be used to screen lakes for potential human health risk using an easy, inexpensive sampling and analysis method.

Funder

National Institute of Environmental Health Sciences

University of Washington Tacoma, SIAS

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations—A Review;C Luvonga;Journal of Agricultural and Food Chemistry,2020

2. Chronic health effects in people exposed to arsenic via the drinking water: Dose-response relationships in review;T Yoshida;Toxicol Appl Pharmacol,2004

3. Industrial arsenic contamination causes catastrophic changes in freshwater ecosystems.;G Chen;Sci Rep,2015

4. A review of the arsenic cycle in natural waters;JF Ferguson;Water Res,1972

5. Arsenic and lead distribution and mobility in lake sediments in the south-central Puget Sound watershed: The long-term impact of a metal smelter in Ruston, Washington, USA;JE Gawel;Science of the Total Environment,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3