Enhanced and unenhanced: Radiomics models for discriminating between benign and malignant cystic renal masses on CT images: A multi-center study

Author:

Huang Lesheng,Feng Wenhui,Lin Wenxiang,Chen Jun,Peng Se,Du Xiaohua,Li Xiaodan,Liu Tianzhu,Ye YongsongORCID

Abstract

Background Machine learning algorithms used to classify cystic renal masses (CRMs) nave not been applied to unenhanced CT images, and their diagnostic accuracy had not been compared against radiologists. Method This retrospective study aimed to develop radiomics models that discriminate between benign and malignant CRMs in a triple phase computed tomography (CT) protocol and compare the diagnostic accuracy of the radiomics approach with experienced radiologists. Predictive models were established using a training set and validation set of unenhanced and enhanced (arterial phase [AP] and venous phase [VP]) CT images of benign and malignant CRMs. The diagnostic capabilities of the models and experienced radiologists were compared using Receiver Operating Characteristic (ROC) curves. Results On unenhanced, AP and VP CT images in the validation set, the AUC, specificity, sensitivity and accuracy for discriminating between benign and malignant CRMs were 90.0 (95%CI: 81–98%), 90.0%, 90.5% and 90.2%; 93.0% (95%CI: 86–99%), 86.7%, 95.2% and 88.3%; and 95.0% (95%CI: 90%-100%), 93.3%, 90.5% and 92.1%, respectively, for the radiomics models. Diagnostic accuracy of the radiomics models differed significantly on unenhanced images in the training set vs. each radiologist (p = 0.001 and 0.003) but not in the validation set (p = 0.230 and 0.590); differed significantly on AP images in the validation set vs. each radiologist (p = 0.007 and 0.007) but not in the training set (p = 0.663 and 0.663); and there were no differences on VP images in the training or validation sets vs. each radiologist (training set: p = 0.453 and 0.051, validation set: p = 0.236 and 0.786). Conclusions Radiomics models may have clinical utility for discriminating between benign and malignant CRMs on unenhanced and enhanced CT images. The performance of the radiomics model on unenhanced CT images was similar to experienced radiologists, implying it has potential as a screening and diagnostic tool for CRMs.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3