Helicase-like transcription factor (HLTF)-deleted CDX/TME model of colorectal cancer increased transcription of oxidative phosphorylation genes and diverted glycolysis to boost S-glutathionylation in lymphatic intravascular metastatic niches

Author:

Martinez-Marin DaliaORCID,Helmer Rebecca A.,Kaur Gurvinder,Washburn Rachel L.,Martinez-Zaguilan Raul,Sennone Souad R.,Dufour Jannette M.,Chilton Beverly S.ORCID

Abstract

Helicase-like transcription factor (HLTF) also known as SMARCA3, protects genome integrity. A tumor suppressor, HLTF is expressed in tumor cells but not in the tumor microenvironment (TME) in early-stage colorectal cancer (CRC). With disease progression, there is high concordance between epigenetic silencing of HLTF in CRC cells and negligible HLTF expression in the TME. We developed a cell line-derived xenograft (CDX) model and show for the first time that HLTF-deletion in cancer cells and the TME results in metabolic reprogramming that mitigates oxidative stress in lymphatic intravascular metastatic niches. The two metabolic pathways that derive energy from glucose—glycolysis and oxidative phosphorylation (OXPHOS)—are variously utilized by cancer cells depending upon the TME. HIF-1α, a master regulator of glycolysis, was eliminated from a role in reprogramming metabolism to satisfy CDX energetic requirements by RNAseq and spatial transcriptomics. Variability in the gut microbiome, with a putative role in altered metabolism, was also eliminated. HLTF-deleted cancer cells recovered from DNA damage at a transcriptomic level induction of DNA repair and OXPHOS genes linked to an amoeboid-associated phenotype at the tumor border (confocal microscopy). HLTF-deleted cancer and endothelial cells of lymphatic (PDPN) intravascular niches in the TME shared a site-specific protein S-glutathionylation signature (2D DIGE, MALDI-TOF/TOF mass spectrometry) for three glycolytic enzymes (PGK1 Cys379/380, PGAM1 Cys55, ENOA1 Cys119) that diverted glycolysis in support of continued glutathione biosynthesis. The collective absence of HLTF/Hltf from tumor and TME achieved redox homeostasis throughout the CDX and promoted metastasis.

Funder

Harry Weitlauf Endowment for Cancer Research

Robert A. Welch Foundation

CPRIT TTUHSC Cancer Animal Facility Core

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3