Fall prediction in a quiet standing balance test via machine learning: Is it possible?

Author:

Pennone JulianaORCID,Aguero Natasha Fioretto,Martini Daniel Marczuk,Mochizuki Luis,do Passo Suaide Alexandre Alarcon

Abstract

The elderly population is growing rapidly in the world and falls are becoming a big problem for society. Currently, clinical assessments of gait and posture include functional evaluations, objective, and subjective scales. They are considered the gold standard to indicate optimal mobility and performance individually, but their sensitivity and specificity are not good enough to predict who is at higher risk of falling. An innovative approach for fall prediction is the machine learning. Machine learning is a computer-science area that uses statistics and optimization methods in a large amount of data to make outcome predictions. Thus, to assess the performance of machine learning algorithms in classify participants by age, number of falls and falls frequency based on features extracted from a public database of stabilometric assessments. 163 participants (116 women and 47 men) between 18 and 85 years old, 44.0 to 75.9 kg mass, 140.0 to 189.8 cm tall, and 17.2 to 31.9 kg/m2 body mass index. Six different machine learning algorithms were tested for this classification, which included Logistic Regression, Linear Discriminant Analysis, K Nearest-neighbours, Decision Tree Classifier, Gaussian Naive Bayes and C-Support Vector Classification. The machine learning algorithms were applied in this database which has sociocultural, demographic, and health status information about participants. All algorithm models were able to classify the participants into young or old, but our main goal was not achieved, no model identified participants at high risk of falling. Our conclusion corroborates other works in the biomechanics field, arguing the static posturography, probably due to the low daily living activities specificity, does not have the desired effects in predicting the risk of falling. Further studies should focus on dynamic posturography to assess the risk of falls.

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. Global prevalence of falls in the older adults: a comprehensive systematic review and meta-analysis;N Salari;J Orthop Surg Res,2022

2. Description, classification and prevention of falls in old people at home;D Wild;Rheumatology,1981

3. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: A systematic review and meta- analysis;E Barry;BMC Geriatr,2014

4. Association between physiological falls risk and physical performance tests among community-dwelling older adults;S Singh;Clin Interv Aging,2015

5. Preventing falls in older adults: A multifactorial approach;M Weinstein;Home Heal Care Manag Pract,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3