Flow cytometry-based quantification of genome editing efficiency in human cell lines using the L1CAM gene

Author:

Hasan Muhammad NazmulORCID,Hyodo Toshinori,Biswas Mrityunjoy,Rahman Md. Lutfur,Mihara Yuko,Karnan Sivasundaram,Ota Akinobu,Tsuzuki Shinobu,Hosokawa Yoshitaka,Konishi HiroyukiORCID

Abstract

CRISPR/Cas9 is a powerful genome editing system that has remarkably facilitated gene knockout and targeted knock-in. To accelerate the practical use of CRISPR/Cas9, however, it remains crucial to improve the efficiency, precision, and specificity of genome editing, particularly targeted knock-in, achieved with this system. To improve genome editing efficiency, researchers should first have a molecular assay that allows sensitive monitoring of genome editing events with simple procedures. In the current study, we demonstrate that genome editing events occurring in L1CAM, an X-chromosome gene encoding a cell surface protein, can be readily monitored using flow cytometry (FCM) in multiple human cell lines including neuroblastoma cell lines. The abrogation of L1CAM was efficiently achieved using Cas9 nucleases which disrupt exons encoding the L1CAM extracellular domain, and was easily detected by FCM using anti-L1CAM antibodies. Notably, L1CAM-abrogated cells could be quantified by FCM in four days after transfection with a Cas9 nuclease, which is much faster than an established assay based on the PIGA gene. In addition, the L1CAM-based assay allowed us to measure the efficiency of targeted knock-in (correction of L1CAM mutations) accomplished through different strategies, including a Cas9 nuclease-mediated method, tandem paired nicking, and prime editing. Our L1CAM-based assay using FCM enables rapid and sensitive quantification of genome editing efficiencies and will thereby help researchers improve genome editing technologies.

Funder

Japan Society for the Promotion of Science

Nitto

Takeda Science Foundation

Hirose Foundation

Ichihara International Scholarship Foundation

Takahashi Industrial and Economic Research Foundation

Kobayashi Foundation

Uehara Memorial Foundation

Japanese Government (MEXT) Scholarship for Research Students

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3