Can lateral tenodesis improve the rotational stability of the ACL reconstruction? A finite element analysis

Author:

Risvas KonstantinosORCID,Stanev Dimitar,Moustakas Konstantinos

Abstract

One of the most common knee injuries is the Anterior Cruciate Ligament (ACL) rupture with severe implications on knee stability. The usual treatment is the ACL Reconstruction (ACLR) surgery where the surgeon replaces the torn ligament with a graft in an effort to restore knee kinematics. In case of excessive rotatory instability, Lateral Extra—Articular Tenodesis (LET) can be performed in combination with ACLR. Additionally, LET appears to reduce ACLR graft forces minimizing graft failure chances. However, there are concerns about overconstraining physiological rotation. To gain insight in this controversial topic, we developed an automatic, open-source tool to create a series of Finite Element (FE) models attempting to investigate the interactions of ACLR and LET through simulation. We started by creating a validated model of the healthy knee joint that served as reference for subsequent FE simulations. Then, we created FE models of standalone ACLR and combined ACLR—LET. Each model was assessed by applying a loading profile that resembles the reduction phase of the Pivot—Shift clinical exam. We measured the External Tibia Rotation (ETR), the Posterior Tibia Translation (PTT) of the lateral tibial compartment, and the ACLR graft stress developed around the femoral tunnel insertion site. We observed the following: a) LET reduces ETR and PTT compared to isolated ACLR, b) combined ACLR—LET is more sensitive to LET graft pretension with lower values showcasing performance closer to the healthy joint, c) LET reduces ACLR graft forces for the same pretension values, d) LET exhibits significant overconstraint for higher pretension values. In general, these findings are in agreement with relevant clinical studies and accentuate the potential of the developed framework as a tool that can assist orthopaedists during surgery planning. We provide open access for the FE models of this study to enhance research transparency, reproducibility and extensibility.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3