Optimal allocation of distributed energy storage systems to enhance voltage stability and minimize total cost

Author:

Hany Ramy MohamedORCID,Mahmoud Tarek,Osman El Said Abd El Aziz,El Rehim Abo El Fotouh Abd,Seoudy Hatem M.ORCID

Abstract

The enhancement of energy efficiency in a distribution network can be attained through the adding of energy storage systems (ESSs). The strategic placement and appropriate sizing of these systems have the potential to significantly enhance the overall performance of the network. An appropriately dimensioned and strategically located energy storage system has the potential to effectively address peak energy demand, optimize the addition of renewable and distributed energy sources, assist in managing the power quality and reduce the expenses associated with expanding distribution networks. This study proposes an efficient approach utilizing the Dandelion Optimizer (DO) to find the optimal placement and sizing of ESSs in a distribution network. The goal is to reduce the overall annual cost of the system, which includes expenses related to power losses, voltage deviation, and peak load damand. The methods outlined in this study is implemented on the IEEE 33 bus distribution system. The outcomes obtained from the proposed DO are contrasted with those of the original system so as to illustrate the impact of ESSs location on both the overall cost and voltage profile. Furthermore, a comparison is made between the outcomes of the Ant Lion Optimizer (ALO) and the intended Design of Experiment DO, revealing that the DO has obtained greater savings in comparison to the ALO. The recommended methodology’s simplicity and efficacy in resolving the researched optimization issue make the acquired locations and sizes of ESSs favorable for implementation within the system.

Publisher

Public Library of Science (PLoS)

Reference51 articles.

1. Distributed generation: embrace the change;R. J. P. E. Pool,2004

2. Demand side management: Benefits and challenges;G. J. E. p. Strbac,2008

3. Distributed energy resources, power quality and reliability-Background;L. A. Schienbein;Pacific Northwest National Lab.(PNNL), Richland, WA (United States),2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3