Lightweight forest smoke and fire detection algorithm based on improved YOLOv5

Author:

Yang JieORCID,Zhu WenchaoORCID,Sun Ting,Ren Xiaojun,Liu Fang

Abstract

Smoke and fire detection technology is a key technology for automatically realizing forest monitoring and forest fire warning. One of the most popular algorithms for object detection tasks is YOLOv5. However, it suffers from some challenges, such as high computational load and limited detection performance. This paper proposes a high-performance lightweight network model for detecting forest smoke and fire based on YOLOv5 to overcome these problems. C3Ghost and Ghost modules are introduced into the Backbone and Neck network to achieve the purpose of reducing network parameters and improving the feature’s expressing performance. Coordinate Attention (CA) module is introduced into the Backbone network to highlight the object’s important information about smoke and fire and to suppress irrelevant background information. In Neck network part, in order to distinguish the importance of different features in feature fusing process, the weight parameter of feature fusion is added which is based on PAN (path aggregation network) structure, which is named PAN-weight. Multiple sets of controlled experiments were conducted to confirm the proposed method’s performance. Compared with YOLOv5s, the proposed method reduced the model size and FLOPs by 44.75% and 47.46% respectively, while increased precision and mAP(mean average precision)@0.5 by 2.53% and 1.16% respectively. The experimental results demonstrated the usefulness and superiority of the proposed method. The core code and dataset required for the experiment are saved in this article at https://github.com/vinchole/zzzccc.git.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3