All-synchronized picosecond pulses and time-gated detection improve the spatial resolution of two-photon STED microscopy in brain tissue imaging

Author:

Ishii HirokazuORCID,Otomo Kohei,Chang Ching-Pu,Yamasaki Miwako,Watanabe Masahiko,Yokoyama Hiroyuki,Nemoto TomomiORCID

Abstract

Super-resolution in two-photon excitation (2PE) microscopy offers new approaches for visualizing the deep inside the brain functions at the nanoscale. In this study, we developed a novel 2PE stimulated-emission-depletion (STED) microscope with all-synchronized picosecond pulse light sources and time-gated fluorescence detection, namely, all-pulsed 2PE-gSTED microscopy. The implementation of time-gating is critical to excluding undesirable signals derived from brain tissues. Even in a case using subnanosecond pulses for STED, the impact of time-gating was not negligible; the spatial resolution in the image of the brain tissue was improved by approximately 1.4 times compared with non time-gated image. This finding demonstrates that time-gating is more useful than previously thought for improving spatial resolution in brain tissue imaging. This microscopy will facilitate deeper super-resolution observation of the fine structure of neuronal dendritic spines and the intracellular dynamics in brain tissue.

Funder

AMED Brain/MINDS

JST CREST

MEXT/JSPS KAKENHI

Research Foundation for Opto-Science and Technology

ExCELLS “Encouragement Research for Young Scientists”

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3