Comprehensive tool for a phase compensation reconstruction method in digital holographic microscopy operating in non-telecentric regime

Author:

Bogue-Jimenez BrianORCID,Trujillo CarlosORCID,Doblas AnaORCID

Abstract

Quantitative phase imaging (QPI) via Digital Holographic microscopy (DHM) has been widely applied in material and biological applications. The performance of DHM technologies relies heavily on computational reconstruction methods to provide accurate phase measurements. Among the optical configuration of the imaging system in DHM, imaging systems operating in a non-telecentric regime are the most common ones. Nonetheless, the spherical wavefront introduced by the non-telecentric DHM system must be compensated to provide undistorted phase measurements. The proposed reconstruction approach is based on previous work from Kemper’s group. Here, we have reformulated the problem, reducing the number of required parameters needed for reconstructing phase images to the sensor pixel size and source wavelength. The developed computational algorithm can be divided into six main steps. In the first step, the selection of the +1-diffraction order in the hologram spectrum. The interference angle is obtained from the selected +1 order. Secondly, the curvature of the spherical wavefront distorting the sample’s phase map is estimated by analyzing the size of the selected +1 order in the hologram’s spectrum. The third and fourth steps are the spatial filtering of the +1 order and the compensation of the interference angle. The next step involves the estimation of the center of the spherical wavefront. An optional final optimization step has been included to fine-tune the estimated parameters and provide fully compensated phase images. Because the proper implementation of a framework is critical to achieve successful results, we have explicitly described the steps, including functions and toolboxes, required for reconstructing phase images without distortions. As a result, we have provided open-access codes and a user interface tool with minimum user input to reconstruct holograms recorded in a non-telecentric DHM system.

Funder

Directorate for Biological Sciences

Vicerrectoria de Ciencia, Tecnologia e Innovacion from Universidad EAFIT

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3