Response retention and apparent motion effect in visual cortex models

Author:

Tiselko Vasilii S.,Volgushev Maxim,Jancke DirkORCID,Chizhov Anton V.ORCID

Abstract

Apparent motion is a visual illusion in which stationary stimuli, flashing in distinct spatial locations at certain time intervals, are perceived as one stimulus moving between these locations. In the primary visual cortex, apparent-motion stimuli produce smooth spatio-temporal patterns of activity similar to those produced by continuously moving stimuli. An important prerequisite for producing such activity patterns is prolongation of responses to brief stimuli. Indeed, a brief stimulus can evoke in the visual cortex a long response, outlasting the stimulus by hundreds of milliseconds. Here we use firing-rate based models with simple ring structure, and biologically-detailed conductance-based refractory density (CBRD) model with retinotopic space representation to analyze the response retention and the origin of smooth profiles of activity in response to apparent-motion stimuli. We show that the strength of recurrent connectivity is the major factor that endorses neuronal networks with the ability for response retention. The same strengths of recurrent connections mediate the appearance of bump attractor in the ring models. Factors such as synaptic depression, NMDA receptor mediated currents, and conductances regulating spike adaptation influence response retention, but cannot substitute for the weakness of recurrent connections to reproduce response retention in models with weak connectivity. However, the weakness of lateral recurrent connections can be compensated by layering: in multi-layer models even with weaker connections the activity retains due to its feedforward propagation from layer to layer. Using CBRD model with retinotopic space representation we further show that smooth spatio-temporal profiles of activity in response to apparent-motion stimuli are produced in the models expressing response retention, but not in the models that fail to produce response retention. Together, these results demonstrate a link between response retention and the ability of neuronal networks to generate spatio-temporal patterns of activity, which are compatible with perception of apparent motion.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3