Anchialine pool shrimp (Halocaridina rubra) as an indicator of sewage in coastal groundwater ecosystems on the island of Hawaiʻi

Author:

Marrack Lisa C.ORCID,Beavers Sallie C.

Abstract

Groundwater is a primary pathway for wastewater and other pollutants to enter coastal ecosystems worldwide. Sewage associated pathogens, pharmaceuticals, and other emerging contaminants pose potential risks to marine life and human health. Anchialine pool ecosystems and the endemic species they support are at risk and provide an opportunity to sample for presence of contaminants prior to diffusion in the marine environment. In this study, we tested the potential use of nitrogen isotopes in the tissues of a dominant anchialine pool grazing shrimp (Halocaridina rubra), as a bioindicator for sewage in groundwater flowing through their habitats. Water quality parameters and shrimp tissue isotopes (N and C) were collected from pools exposed to a range of sewage contamination along the West Hawai‘i coastal corridor from 2015 to 2017. Data were used to test for spatial and temporal variability both within and among pools and to examine the relationship between stable isotopes and water quality parameters. Within 22 pools, mean δ15N from whole tissue samples ranged between 2.74‰ and 22.46‰. Variability of isotope values was low within individual pools and within pool clusters. However, δ15N differed significantly between areas and indicated that sewage is entering groundwater in some of the sampled locations. The significant positive relationship between δ15N and dissolved nitrogen (p<0.001, R2 = 0.84) and δ15N and phosphorus (p<0.001, R2 = 0.9) support this conclusion. In a mesocosm experiment, the nitrogen half-life for H. rubra tissue was estimated to be 20.4 days, demonstrating that the grazer provides a time-integrative sample compared to grab-sample measurements of dissolved nutrients. Ubiquitous grazers such as H. rubra may prove a useful and cost-effective method for δ15N detection of sewage in conjunction with standard monitoring methods, enabling sampling of a large number of pools to establish and refine monitoring programs, especially because anchialine habitats typically support no macroalgae.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3