Numerical study of the tire hydroplaning behavior of aircraft on grooved concrete pavement

Author:

Cai Jing,Du NizhiORCID,Zhou Ning,Li Yue,Dai Xuan,Zhang Heng

Abstract

Safe operation is crucial for civil aviation, and reducing the risk of aircraft tire hydroplaning is essential for civil aviation safety. Here, a new 3D aircraft tire-grooved (smooth) wet pavement model based on the coupled Eulerian-Lagrangian (CEL) algorithm for the A320 aircraft was developed, and the effect of the ground contact area of an aircraft tire on the hydrodynamic pressure and support force of the tire under smooth and grooved wet pavement conditions was investigated. The results indicate that at the same taxiing speed, the ground contact area of the aircraft tire under the grooved wet-pavement condition is reduced by 19.8% compared to the smoothed wet-pavement condition, which is reduced by 6.2%. Similar patterns are observed for the hydrodynamic pressure and the critical hydrodynamic speed during landing and taking-off procedures, with upper and lower limited values obtained through the simulation results. Additionally, the predicted correction factor of the hydroplaning speed at different water film thicknesses is compared with those values obtained via the NASA formula. A comparison shows that the NASA formula underestimates the critical hydroplaning speed during the landing procedure. The corresponding correction factor will be less than 1.0 when the water film thickness reaches a critical value of 7.66 mm.

Funder

Engineering Research Center of Intelligent Construction and Industrialization, CAAC

Tianjin Natural Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. A search for mechanism and ability measure of the aircraft tire’ hydroplaning;AJ Zhao;Aircr Des,2015

2. Hydroplaning of modern aircraft tires;EG Van;Natl Lucht- en Ruimtevaartlaboratorium,2001

3. Mechanism analysis of wheel power water skiing;ZG Yu;J Air Force Eng Univ,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3