Abstract
Background
Tongue diagnosis in traditional Chinese medicine (TCM) provides clinically important, objective evidence from direct observation of specific features that assist with diagnosis. However, the current interpretation of tongue features requires a significant amount of manpower and time. TCM physicians may have different interpretations of features displayed by the same tongue. An automated interpretation system that interprets tongue features would expedite the interpretation process and yield more consistent results.
Materials and methods
This study applied deep learning visualization to tongue diagnosis. After collecting tongue images and corresponding interpretation reports by TCM physicians in a single teaching hospital, various tongue features such as fissures, tooth marks, and different types of coatings were annotated manually with rectangles. These annotated data and images were used to train a deep learning object detection model. Upon completion of training, the position of each tongue feature was dynamically marked.
Results
A large high-quality manually annotated tongue feature dataset was constructed and analyzed. A detection model was trained with average precision (AP) 47.67%, 58.94%, 71.25% and 59.78% for fissures, tooth marks, thick and yellow coatings, respectively. At over 40 frames per second on a NVIDIA GeForce GTX 1060, the model was capable of detecting tongue features from any viewpoint in real time.
Conclusions/Significance
This study constructed a tongue feature dataset and trained a deep learning object detection model to locate tongue features in real time. The model provided interpretability and intuitiveness that are often lacking in general neural network models and implies good feasibility for clinical application.
Funder
Ministry of Education
National Science and Technology Council
Publisher
Public Library of Science (PLoS)
Reference53 articles.
1. The Study on the Agreement between Automatic Tongue Diagnosis System and Traditional Chinese Medicine Practitioners;LC Lo;Evid Based Complement Alternat Med,2012
2. Traditional Chinese medicine tongue inspection: an examination of the inter- and intrapractitioner reliability for specific tongue characteristics;M Kim;J Altern Complement Med,2008
3. Interobserver reliability of tongue diagnosis using traditional korean medicine for stroke patients;MM Ko;Evid Based Complement Alternat Med,2012
4. Lo Lc, Hou MCc, Chen Yl, Chiang JY, Hsu Cc, editors. Automatic Tongue Diagnosis System. 2009 2nd International Conference on Biomedical Engineering and Informatics; 2009 17–19 Oct. 2009.
5. Automatic tongue feature extraction;Y Hsu;2010 International Computer Symposium (ICS2010),2010