A novel, benchtop model for quantitative analysis of resistance in ventricular catheters

Author:

Gopalakrishnan PranavORCID,Faryami Ahmad,Harris Carolyn A.ORCID

Abstract

Introduction The mechanisms of catheter obstruction are still poorly understood, but the literature suggests that resistance to fluid flow plays a significant role. We developed and assessed a gravity-driven device that measures flow through ventricular catheters. We used this device to quantitatively analyze the resistances of unused ventricular catheters used in the treatment of hydrocephalus; failed hydrocephalus catheters from our catheter biorepository were also evaluated quantitatively. Methods Catheters of three manufacturing companies were inserted into the benchtop model, which records time, flow rate, and pressure data using sensors. The relative resistances of catheters across six design models were evaluated. Experiments were performed to evaluate changes in the relative resistance of a catheter when the catheter’s holes were progressively closed. The relative resistance of explanted catheters from our catheter biorepository was also measured. Results Experimental results showed significant differences (P<0.05) between the relative resistances of different catheter models just after being removed from their packaging. A non-linear trend of increasing resistance was observed in experiments on catheters with artificially obstructed holes. Data from five individual benchtop models were compared, and the differences in measured data between the models were found to be negligible. A significant increase (P < 0.05) in relative resistance was observed in explanted catheters. Conclusion The current study sought to propose a novel in-vitro model and use it to examine data on differences in relative resistance among catheter models. From these experiments, we can rapidly correlate clinical patient cohorts to identify mechanisms of luminal shunt obstruction.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3