Optimization of cabin seating arrangement strategies based on the Wells–Riley risk theory

Author:

Liu YanxiORCID,Cheng Xuan,Tang Dengzhao,Wang Xinyue

Abstract

Civil aviation transport is an important source of global respiratory disease spread due to the closely-spaced environment. In order to reduce the probability of infection of passengers, an improved Wells-Riley model for cabin passenger risk assessment have been given in this work, the cabin ventilation and passenger nose and mouth orientation were considered. The model’s effectiveness has been verified with published data. Finally, how the load factor and use of an empty seat scheme are associated with the number of infected people was assessed. The results demonstrated that the number of infected people positively correlates with the passenger load factor, and the most suitable load factor can be determined by controlling the final number of infected people with the condition of the epidemic situation in the departure city. Additionally, infection risk was found to be lower among passengers in window seats than in those in aisle seats and middle seats, and keeping empty seats in the middle or aisle could reduce the cabin average probability of infection by up to 37.47%. Using the model developed here, airlines can determine the optimal load factor threshold and seating arrangement strategy to improve economic benefits and reduce the probability of passenger infection.

Funder

the National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. WHO Declares COVID-19 a Pandemic.;D Cucinotta;Acta Biomed.,2020

2. COVID-19 and transportation of India: influence on infection risk and greenhouse gas emissions.;R. Soni A;Environment, development and sustainability.,2022

3. Airborne transmission of SARS-CoV-2: The world should face the reality[J].;L Morawska;Environment international.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3