Persistence comparison of two Shiga-toxin producing Escherichia coli (STEC) serovars during long-term storage and thermal inactivation in various wheat flours

Author:

Hines Ian S.ORCID,Jurkiw Tom,Nguyen Emily,Ferguson Martine,Solaiman Sultana,Reed Elizabeth,Hoffmann Maria,Zheng Jie

Abstract

Foodborne outbreaks associated with Shiga toxin-producing Escherichia coli (STEC) contaminated wheat flour have been an increasing food safety concern in recent decades. However, there is little literature aimed at investigating the impact of different flour types on the persistence of STEC during storage and thermal inactivation. Therefore, two serovars of STEC, O121 and O157, were selected to inoculate each of five different types of common wheat flours: whole wheat, bleached, unbleached, bread, and self-rising. Inoculated flours were examined for the stability of STEC during storage for up to 42 days at room temperature (RT) and aw ~0.56. Additionally, the thermal resistance of O121 and O157 under isothermal conditions at 60, 70, 80, and 90°C was analyzed for the inoculated flours. STEC storage persistence at RT was generally not affected by flour type, however, decreases of 1.2 and 2.4 log CFU/day within whole wheat flour for O121 and O157, respectively, were significantly lower than other flours. Though few differences were identified in relation to flour type, O121 exhibited significantly better survival rates than O157 during both equilibrium and storage periods. Compared to an approximate 6 log reduction in the population of O157, O121 population levels were reduced by a significantly lower amount (~3 log) during the entire storage period at RT. At each isothermal temperature, the impact of flour type on the thermal resistance capabilities of O121 or O157 was not a significant factor and resulted in similar survival curves regardless of serovar. Instead of exhibiting linear survival curves, both O121 and O157 displayed nonlinear curves with some shoulder/tail effect. Similar for both O121 and O157, the predicted decimal reduction time (D-value) decreased from approximately 25 min to around 8 min as the isothermal temperature increased from 60°C to 90°C. Results reported here can contribute to risk assessment models concerning contamination of STEC in wheat flour and add to our understanding of the impacts of flour type and STEC serovar on desiccation stability during storage and isothermal inactivation during thermal treatment.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3