Whole blood RNA extraction efficiency contributes to variability in RNA sequencing data sets

Author:

Wilfinger William W.ORCID,Eghbalnia Hamid R.,Mackey Karol,Miller Robert,Chomczynski Piotr

Abstract

Numerous methodologies are used for blood RNA extraction, and large quantitative differences in recovered RNA content are reported. We evaluated three archived data sets to determine how extraction methodologies might influence mRNA and lncRNA sequencing results. The total quantity of RNA recovered /ml of blood affects RNA sequencing by impacting the recovery of weakly expressed mRNA, and lncRNA transcripts. Transcript expression (TPM counts) plotted in relation to transcript size (base pairs, bp) revealed a 30% loss of short to midsized transcripts in some data sets. Quantitative recovery of RNA is of considerable importance, and it should be viewed more judiciously. Transcripts common to the three data sets were subsequently normalized and transcript mean TPM counts and TPM count coefficient of variation (CV) were plotted in relation to increasing transcript size. Regression analysis of mean TPM counts versus transcript size revealed negative slopes in two of the three data sets suggesting a reduction of TPM transcript counts with increasing transcript size. In the third data set, the regression slope line of mRNA transcript TPM counts approximates zero and TPM counts increased in proportion to transcript size over a range of 200 to 30,000 bp. Similarly, transcript TPM count CV values also were uniformly distributed over the range of transcript sizes. In the other data sets, the regression CV slopes increased in relation to transcript size. The recovery of weakly expressed and /or short to midsized mRNA and lncRNA transcripts varies with different RNA extraction methodologies thereby altering the fundamental sequencing relationship between transcript size and TPM counts. Our analysis identifies differences in RNA sequencing results that are dependent upon the quantity of total RNA recovery from whole blood. We propose that incomplete RNA extraction directly impacts the recovery of mRNA and lncRNA transcripts from human blood and speculate these differences contribute to the “batch” effects commonly identified between sequencing results from different archived data sets.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3