Musical instrument classifier for early childhood percussion instruments

Author:

Rufino BrandonORCID,Khan Ajmal,Dutta Tilak,Biddiss ElaineORCID

Abstract

While the musical instrument classification task is well-studied, there remains a gap in identifying non-pitched percussion instruments which have greater overlaps in frequency bands and variation in sound quality and play style than pitched instruments. In this paper, we present a musical instrument classifier for detecting tambourines, maracas and castanets, instruments that are often used in early childhood music education. We generated a dataset with diverse instruments (e.g., brand, materials, construction) played in different locations with varying background noise and play styles. We conducted sensitivity analyses to optimize feature selection, windowing time, and model selection. We deployed and evaluated our best model in a mixed reality music application with 12 families in a home setting. Our dataset was comprised of over 369,000 samples recorded in-lab and 35,361 samples recorded with families in a home setting. We observed the Light Gradient Boosting Machine (LGBM) model to perform best using an approximate 93 ms window with only 12 mel-frequency cepstral coefficients (MFCCs) and signal entropy. Our best LGBM model was observed to perform with over 84% accuracy across all three instrument families in-lab and over 73% accuracy when deployed to the home. To our knowledge, the dataset compiled of 369,000 samples of non-pitched instruments is first of its kind. This work also suggests that a low feature space is sufficient for the recognition of non-pitched instruments. Lastly, real-world deployment and testing of the algorithms created with participants of diverse physical and cognitive abilities was also an important contribution towards more inclusive design practices. This paper lays the technological groundwork for a mixed reality music application that can detect children’s use of non-pitched, percussion instruments to support early childhood music education and play.

Funder

Ontario provincial governments

Natural Sciences and Engineering Research Councils of Canada, the Canadian Institutes of Health Research, and the Social Sciences and Humanities Research Council of Canada

Rhythm Band Instruments

Ontario Brain Institute

Publisher

Public Library of Science (PLoS)

Reference51 articles.

1. The power of music: Its impact on the intellectual, social and personal development of children and young people;S. Hallam;Int J Music Educ,2010

2. Understanding participation of preschool-age children with cerebral palsy.;LA Chiarello;J Early Interv,2012

3. Access to Educational and Community Activities for Young Children with Disabilities.;E Carlson;National Center for Special Education Research, Tech. Rep,2010

4. Measuring children’s participation in recreation and leisure activities: Construct validation of the CAPE and PAC.;GA King;Child Care Health Dev,2007

5. Inclusion of young children with disabilities in regulated child care in Canada: A snapshot of research, policy, and practice.;S Halfon;Childcare Resource and Research Unit.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3