Modelling elephant corridors over two decades reveals opportunities for conserving connectivity across a large protected area network

Author:

Giliba Richard A.ORCID,Kiffner Christian,Fust Pascal,Loos Jacqueline

Abstract

Protected area (PA) connectivity is pivotal for the persistence of wide-ranging wildlife species, but is challenged by habitat loss and fragmentation. We analyzed habitat suitability and connectivity for the African elephant (Loxodonta africana) across PAs in south-western Tanzania in 2000, 2010, and 2019. We quantified land-use changes through remote sensing data; estimated habitat suitability through aerial survey data, remotely sensed variables and ensemble species distribution models; modelled least-cost corridors; identified the relative importance of each corridor for the connectivity of the PA network and potential bottlenecks over time through circuit theory; and validated corridors through local ecological knowledge and ground wildlife surveys. From 2000 to 2019, cropland increased from 7% to 13% in the region, with an average expansion of 634 km2 per year. Distance from cropland influenced elephant distribution models the most. Despite cropland expansion, the locations of the modelled elephant corridors (n = 10) remained similar throughout the survey period. Based on local ecological knowledge, nine of the modelled corridors were active, whereas one modelled corridor had been inactive since the 1970s. Based on circuit theory, we prioritize three corridors for PA connectivity. Key indicators of corridor quality varied over time, whereas elephant movement through some corridors appears to have become costlier over time. Our results suggest that, over the past two decades, functional connectivity across the surveyed landscape has largely persisted. Beyond providing crucial information for spatial prioritization of conservation actions, our approach highlights the importance of modeling functional connectivity over time and verifying corridor models with ground-truthed data.

Funder

Robert Bosch Stiftung

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference127 articles.

1. Global biodiversity scenarios for the year 2100;OE Sala;Science (80-),2000

2. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment;T Newbold;Science (80-),2016

3. WWF. Living Planet Report 2020—Bending the curve of biodiversity loss. Almond, R.E.A., Grooten M. and Petersen, T. (Eds). WWF, Gland, Switzerland. 2020.

4. How to protect half of earth to ensure it protects sufficient biodiversity;SL Pimm;Sci Adv,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3