Crop DNA extraction with lab-made magnetic nanoparticles

Author:

Wang Haichuan,Zhao Xueqi,Tan Li,Zhu Junwei,Hyten DavidORCID

Abstract

Molecular breeding methods, such as marker-assisted selection and genomic selection, require high-throughput and cost-effective methods for isolating genomic DNA from plants, specifically from crop tissue or seed with high polysaccharides, lipids, and proteins. A quick and inexpensive high-throughput method for isolating genomic DNA from seed and leaf tissue from multiple crops was tested with a DNA isolation method that combines CTAB extraction buffer and lab-made SA-coated magnetic nanoparticles. This method is capable of isolating quality genomic DNA from leaf tissue and seeds in less than 2 hours with fewer steps than a standard CTAB extraction method. The yield of the genomic DNA was 582–729 ng per 5 leaf discs or 216–1869 ng per seed in soybean, 2.92–62.6 ng per 5 leaf discs or 78.9–219 ng per seed in wheat, and 30.9–35.4 ng per 5 leaf discs in maize. The isolated DNA was tested with multiple molecular breeding methods and was found to be of sufficient quality and quantity for PCR and targeted genotyping by sequencing methods such as molecular inversion probes (MIPs). The combination of SA-coated magnetic nanoparticles and CTAB extraction buffer is a fast, simple, and environmentally friendly, high-throughput method for both leaf tissues and seed(s) DNA preparation at low cost per sample. The DNA obtained from this method can be deployed in applied breeding programs for marker-assisted selection or genomic selection.

Funder

Nebraska Research Initiative

North Central Soybean Research Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

1. Next-Generation Sequencing and Emerging Technologies;KR Kumar;Semin Thromb Hemost,2019

2. Universal probe amplification: Multiplex screening technologies for genetic variations;JH Park;Biotechnol J,2015

3. Molecular inversion probes: a novel microarray technology and its application in cancer research;Y Wang;Cancer Genet-Ny,2012

4. Development of molecular inversion probes for soybean progeny genomic selection genotyping;HC Wang;Plant Genome-Us,2022

5. Rapid Isolation of High Molecular-Weight Plant DNA;MG Murray;Nucleic Acids Res,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3