In-silico selection of peptides for the recognition of imidacloprid

Author:

Aldulaijan SarahORCID

Abstract

The sensitive detection of pesticides using low-cost receptors designed from peptides can widen their uses in the environmental surveillance for emerging pollutants. In-silico selection of peptides can help accelerate the design of receptor sequence banks for a given target of interest. In this work, we started from Lymnaea stagnalis acetylcholine-binding protein Q55R mutant receptor-imidacloprid complex, available in the PDB databank, to select three primary short peptides (YSP09, DMR12, WQW13 respectively having 9, 12 and 13 amino acids (AA) in length) from the pesticide interacting zones with the A, B and C chains of the nicotinic receptor. Using molecular docking and molecular dynamics (MD) simulations, we showed that the three peptides can form complexes with the target imidacloprid, having energies close to that obtained from a reference RNR12 peptide. Combination of these peptides allowed preparing a new set of longer peptides (YSM21, PSM22, PSW31 and WQA34) that have higher stability and affinity as shown by the MM-PBSA calculations. In particular, the WQA34 peptide displayed an average binding free energy of –6.44±0.27 kcal/mol, which is three times higher than that of the reference RNR12 peptide (–2.29±0.25 kcal/mol) and formed a stable complex with imidacloprid. Furthermore, the dissociation constants (Kd), calculated from the binding free energy, showed that WQA32 (40 μM) has three orders of magnitude lower Kd than the reference RNR12 peptide (3.4 × 104 μM). Docking and RMSD scores showed that the WQA34 peptide is potentially selective to the target imidacloprid with respect to acetamiprid and clothianidin. Therefore, this peptide can be used in wet-lab experiments to prepare a biosensor to selectively detect imidacloprid.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3