Assessment of global histone acetylation in pediatric and adolescent obesity: Correlations with SIRT1 expression and metabolic-inflammatory profiles

Author:

Taghizadeh Nima,Mohammadi Soha,yousefi Zeynab,Golpour Pegah,Taheri Alemeh,Maleki Mohammad Hasan,Nourbakhsh MitraORCID,Nourbakhsh Mona,Azar Maryam Razzaghy

Abstract

Background Epigenetic modifications, particularly histone acetylation-deacetylation and its related enzymes, such as sirtuin 1 (SIRT1) deacetylase, may have substantial roles in the pathogenesis of obesity and its associated health issues. This study aimed to evaluate global histone acetylation status and SIRT1 gene expression in children and adolescents with obesity and their association with metabolic and anthropometric parameters. Methods This study included 60 children and adolescents, 30 with obesity and 30 normal-weight. The evaluation consisted of the analysis of global histone acetylation levels and the expression of the SIRT1 gene in peripheral blood mononuclear cells, by specific antibody and real-time PCR, respectively. Additionally, insulin, fasting plasma glucose, lipid profile and tumor necrosis factor α (TNF-α) levels were measured. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Metabolic syndrome was determined based on the diagnostic criteria established by IDF. Results Individuals with obesity, particularly those with insulin resistance, had significantly higher histone acetylation levels compared to control group. Histone acetylation was positively correlated with obesity indices, TNF-α, insulin, and HOMA-IR. Additionally, a significant decrease in SIRT1 gene expression was found among obese individuals, which was negatively correlated with the histone acetylation level. Furthermore, SIRT1 expression levels showed a negative correlation with various anthropometric and metabolic parameters. Conclusion Histone acetylation was enhanced in children and adolescents with obesity, potentially resulting from down-regulation of SIRT1, and could play a role in the obesity-associated metabolic abnormalities and insulin resistance. Targeting global histone acetylation modulation might be considered as an epigenetic approach for early obesity management.

Funder

Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences

Iran University of Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3