Research on sustainable green building space design model integrating IoT technology

Author:

Wang YuchenORCID,Liu Lu

Abstract

"How can the integration of Internet of Things (IoT) technology enhance the sustainability and efficiency of green building (G.B.) design?" is the central research question that this study attempts to answer. This investigation is important because it examines how green building and IoT technology can work together. It also provides important information about how to use contemporary technologies for environmental sustainability in the building sector. The paper examines a range of IoT applications in green buildings, focusing on this intersection. These applications include energy monitoring, occupant engagement, smart building automation, predictive maintenance, renewable energy integration, and data analytics for energy efficiency enhancements. The objective is to create a thorough and sustainable model for designing green building spaces that successfully incorporates IoT, offering industry professionals cutting-edge solutions and practical advice. The study uses a mixed-methods approach, integrating quantitative data analysis with qualitative case studies and literature reviews. It evaluates how IoT can improve energy management, indoor environmental quality, and resource optimization in diverse geographic contexts. The findings show that there has been a noticeable improvement in waste reduction, energy and water efficiency, and the upkeep of high-quality indoor environments after IoT integration. This study fills a major gap in the literature by offering a comprehensive model for IoT integration in green building design, which indicates its impact. This model positions IoT as a critical element in advancing sustainable urban development and offers a ground-breaking framework for the practical application of IoT in sustainable building practices. It also emphasizes the need for customized IoT solutions in green buildings. The paper identifies future research directions, including the investigation of advanced IoT applications in renewable energy and the evaluation of IoT’s impact on occupant behavior and well-being, along with addressing cybersecurity concerns. It acknowledges the challenges associated with IoT implementation, such as the initial costs and specialized skills needed.

Publisher

Public Library of Science (PLoS)

Reference31 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3