Time series classification of multi-channel nerve cuff recordings using deep learning

Author:

Gill Aseem Partap SinghORCID,Zariffa JoseORCID

Abstract

Neurostimulation and neural recording are crucial to develop neuroprostheses that can restore function to individuals living with disabilities. While neurostimulation has been successfully translated into clinical use for several applications, it remains challenging to robustly collect and interpret neural recordings, especially for chronic applications. Nerve cuff electrodes offer a viable option for recording nerve signals, with long-term implantation success. However, nerve cuff electrodes’ signals have low signal-to-noise ratios, resulting in reduced selectivity between neural pathways. The objective of this study was to determine whether deep learning techniques, specifically networks tailored for time series applications, can increase the recording selectivity achievable using multi-contact nerve cuff electrodes. We compared several neural network architectures, the impact and trade-off of window length on classification performance, and the benefit of data augmentation. Evaluation was carried out using a previously collected dataset of 56-channel nerve cuff recordings from the sciatic nerve of Long-Evans rats, which included afferent signals evoked using three types of mechanical stimuli. Through this study, the best model achieved an accuracy of 0.936 ± 0.084 and an F1-score of 0.917 ± 0.103, using 50 ms windows of data and an augmented training set. These results demonstrate the effectiveness of applying CNNs designed for time-series data to peripheral nerve recordings, and provide insights into the relationship between window duration and classification performance in this application.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

Reference42 articles.

1. Quality of life, body image and self-esteem in patients with unilateral transtibial amputations.;N Sarroca;Sci Rep.,2021

2. Longitudinal changes in employment, health, participation, and quality-of-life and the relationships with long-term survival after spinal cord injury.;Y Cao;Spinal Cord.,2023

3. A neural interface provides long-term stable natural touch perception.;DW Tan;Sci Transl Med,2014

4. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees;DW Tan;Journal Neural Engineering,2015

5. Motor Control and Sensory Feedback Enhance Prosthesis Embodiment and Reduce Phantom Pain After Long-Term Hand Amputation.;DM Page;Front Hum Neurosci,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3