Nonlinear shear characteristics of frozen loess-concrete interface

Author:

Zhang QingweiORCID,Zhang Chunguang

Abstract

Under the different temperature environment, the precast pile-soil interface characteristics has an important impact on the safety and long-term stability for pile foundation. A large precast pile-soil shear experimental device is used to carry out the direct shear test of concrete-loess interface with different moisture contents under different freezing temperatures. The variation laws of shear strength parameters are revealed with influencing factors, and the shear mechanism of interface is discussed. The stress-strain constitutive equation of interface is proposed, and the shear strength criterion is established with considering the effects of temperature and moisture content on cohesion and internal friction angle. The results show the curve of shear stress and shear displacement can be divided into three stages: elastic deformation stage, plastic deformation stage and sliding failure stage, which macroscopically reflects the shear failure mechanism of the frozen soil-concrete interface. The shear strength of the interface is affected by the test temperature, sample moisture content and normal stress. The lower the test temperature, the greater the shear strength of the interface; With the increase of normal stress, the shear strength of interface increases; With the increase of moisture content, the shear strength of the interface increases and then decreases. The relationship of shear stress and shear displacement of frozen soil-concrete interface can be well described by the piecewise combination of hyperbolic function and linear function.

Funder

National Natural Science Foundation of China

Ministry of Education Cooperative Education Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3