Mobility-oriented measurements of people’s exposure to outdoor artificial light at night (ALAN) and the uncertain geographic context problem (UGCoP)

Author:

Liu YangORCID,Kwan Mei-PoORCID

Abstract

Advanced nighttime light (NTL) remote sensing techniques enable the large-scope epidemiological investigations of people’s exposure to outdoor artificial light at night (ALAN) and its health effects. However, multiple uncertainties remain in the measurements of people’s exposure to outdoor ALAN, including the representations of outdoor ALAN, the contextual settings of exposure measurements, and measurement approaches. Non-exposed but included outdoor ALAN and causally irrelevant outdoor ALAN may manifest as contextual errors, and these uncertain contextual errors may lead to biased measurements and erroneous interpretations when modeling people’s health outcomes. In this study, we systematically investigated outdoor ALAN exposure measurements in different geographic contexts using either residence-based or mobility-oriented measurements, different spatial scales, and multiple NTL data sources. Based on the GPS data collected from 208 participants in Hong Kong, outdoor ALAN exposures were measured from NTL imagery at 10 m, 130 m, and 500 m spatial resolutions using in-situ methods or 100 m, 300 m, and 500 m buffer zone averaging. Descriptive analysis, multiple t-tests, and logistic regression were employed to examine the differences between outdoor ALAN exposure measurements using various contextual settings and their effects on modeling people’s overall health. Our results confirmed that different contextual settings may lead to significantly different outdoor ALAN exposure measurements. Our results also confirmed that contextual errors may lead to erroneous conclusions when using improper contextual settings to model people’s overall health. Consequentially, we suggest measuring people’s exposure to outdoor ALAN using the mobility-oriented approach, NTL representation with the high spatial resolution, and a very small buffer zone as a contextual unit to derive outdoor ALAN exposure. This study articulates essential methodological issues induced by uncertainties in outdoor ALAN exposure measurements and can provide essential implications and suggestions for a broad scope of studies that need accurate outdoor ALAN exposure measurements.

Funder

Hong Kong Research Grants Council

Chinese University of Hong Kong

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3